THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH 2058 Honours Mathematical Analysis I 2022-23 Homework 6 2nd November 2022

- Homework will be posted on both the course webpage and blackboard every Tuesday. Students are required to upload their solutions on blackboard by 23:59 p.m. next <u>Thursday</u>. Additional announcement will be made if there are no homework that week.
- Please send an email to echlam@math.cuhk.edu.hk if you have any questions.
- 1. (P.116 Q15) Let $A \subset \mathbb{R}$, $f : A \to \mathbb{R}$, and let $c \in \mathbb{R}$ be a limit point of A. Suppose that $f(x) \ge 0$ for all $x \in A$, so that the function \sqrt{f} is well-defined. Prove that if $\lim_{x\to c} f$ exists, then we have $\lim_{x\to c} \sqrt{f} = \sqrt{\lim_{x\to c} f}$.
- 2. (P.123 Q3) Define $f(x) = |x|^{-\frac{1}{2}}$ for $x \neq 0$, show that $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = +\infty$.
- 3. (P.123 Q11) Suppose that $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = \infty$, show that $\lim_{x\to c} f(x)g(x) = \infty$ if L > 0. And provide a counter-example to in the case when L = 0.